陈仕谋 研究员

陈仕谋

教授/博导

Emailchensm@mail.buct.edu.cn

 

研究领域:

1. 锂离子电池

2. 钠离子电池

3. 固态电池

4. 锌离子电池

5. 金属-空气电池


2002/9 - 2007/1,中国科学院上海应用物理研究所,无机化学,博士

1998/9 - 2002/7,郑州大学,化学,学士


2021/03-至今      北京化工大学材料科学与工程学院,教授

2012/04 –2021/02中国科学院过程工程研究所,研究员。

2011/03-2012/04,日本国立物质材料研究机构,博士后。

2010/04-2011/02,名古屋大学工学部,名古屋大学VBL博士后。

2008/04-2010/04,名古屋大学理学部,日本学术振兴会特别研究员(JSPS)

2007/02-2008/04,中国科学院上海应用物理研究所,助理研究员。


主要从事锂离子电池、固态电池、锌离子电池关键材料、储能器件及产业应用等方面的研究,特别是在功能电解液方面,有10余年研发经验,与企业合作建立了千吨级离子液体高电压电解液示范装置,产品实现产业应用。在J. Am. Chem. Soc.; Angew. Chem. Int. Ed.; Adv. Mater.; Energy Environ. Sci.; ACS Nano; Adv. Funct. Mater.等杂志发表SCI论文160余篇,申请国家发明专利46项,授权28项。承担国家重点研发计划课题,国家自然科学基金委优青、面上、重大研究计划培育,中科院纳米先导专项课题,北京市科委重大项目、郑州市重大专项等10余项课题。曾获2014离子液体与绿色过程青年创新奖,2017年中科院百人计划终期考核优秀;2017年入选江苏省双创人才;2018年入选“智汇郑州”国家级领军人才,2019年获得国家自然科学基金委优青项目资助,2020年入选河北省自然科学基金委杰青,2023年入选英国皇家化学会会士。

近三年代表论文:

[1] Y. Chen, Y. Cui, S. Wang, Ying Xiao, J. Niu, J. Huang, F. Wang, S. M. Chen*. Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes. Adv. Mater. 2023, 35, 2300982. 

[2]  S. Wan, K. Song, J. Chen, S. Zhao, W. Ma, W. Chen,* S. M. Chen*. Reductive competition effect derived solid electrolyte interphase with evenly scattered inorganics enabling ultra-high rate and long-life span sodium metal batteries. J. Am. Chem. Soc., 2023, 145, 21661.

[3] W. Ma, S. Wan, X. Cui, G. Hou, Y. Xiao*, J. Rong*, S. M. Chen*. Exploration and application of self-healing strategies in lithium batteries. Adv. Funct. Mater., 2023, 33, 221282.

[4] Y. Xiao*, S. Hu, Y. Miao, F. Gong, J. Chen, M. Wu, W. Liu*, S. M. Chen*. Recent progress in hot spot regulated strategies for catalysts applied in Li-CO2 batteries. Small, 2023, 19, 2305009. 

[5] Y. Miao, Y. Xiao*, S. Hu, S. M. Chen*. Chalcogenides metal-based heterostructure anode materials toward Na+-storage application. Nano Res., 2023, 16, 2347-2365.

[6] M. Zhao, J. Rong, F. Huo, Y. Lv, B. Yue, Y. Xiao, Y. Chen, G. Hou*, J. Qiu*, S. M. Chen*. Semi-immobilized ionic liquid regulator with fast kinetics towards highly stable zinc anode under -35 °C to 60 °C. Adv. Mater. 2022, 34, 2203153

[7] M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu, Q. Yang, J. Qiu*, F. Wang*, S. M. Chen*. Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high performance zinc-ion battery at wide temperatures. Adv. Mater., 2022, 34, 2206239.

[8] Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao, S. M. Chen*. Engineering self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci., 2022, 15, 4748-4760

[9] Y. Xiao*, Y. Miao, S. Hu, F. Gong, Q. Yu, L. Zhou, S. M. Chen*. Structural stability boosted in 3D carbon-free iron selenide through engineering heterointerfaces with Se-P bonds for appealing Na+-storage. Adv. Funct. Mater. 2022, 33, 2210042.

[10] Y. Xiao*, Y. Miao, S. Wan, Y. Sun*, S. M. Chen*. Synergistic engineering of Se vacancies and heterointerfaces in zinc-cobalt selenide anode for highly efficient Na-ion batteries. Small, 2022, 18, 2202582.

[11] S. Wan, W. Ma, Y. Xiao*, S. M. Chen*. High-voltage and fast-charge electrolytes for lithium-ion batteries. Batteries Supercaps, 2022, 5, e202200368.

[12] Y. Yang, L. Li, L. Liu*, Y. Xiao*, S. M. Chen*. Ce(NO3)3 as an electrolyte additive to regulate uniform lithium deposition for stable all-solid-state batteries. Solid State Ionics, 2022, 374, 115831.

[13] Y. Lv, Y. Xiao, S. Xu, F. Huo*, Y. Chen, M. Zhao, L. Liu, C. Su*, Y. Zhu*, S. M. Chen*. Multifunctional polyzwitterion ionic liquid coating for long-lifespan and dendrite-free Zn metal anodes. J. Mater. Chem. A, 2022, 10, 16952–16961. 

[14] Y. Chen, F. Huo, S. M. Chen*, W. Cai*, S. Zhang*. In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries. Adv. Funct. Mater, 2021, 31, 2102347.

[15] Y. Zhang, S. M. Chen*, Y. Chen, L. Li*, Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries. Mater. Chem. Front., 2021, 5, 3681

[16] T. Chen, S. M. Chen*, Y. Chen, M. Zhao, D. Losic*, S. Zhang*. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Mater. Chem. Front., 2021, 5, 1771-1794.

[17] S. Yan, Y. Wang, T. Chen, Z. Gan, S. M. Chen*, Y. Liu*, S. Zhang. Regulated interfacial stability by coordinating ionic liquids with fluorinated solvent for high voltage and safety batteries. J. Power Sources, 2021, 491, 229603.

[18] G. Liang, Z. Gan, X. Wang, X. Jin, B. Xiong, X. Zhang, S. M. Chen, Y. Wang*, H. He*, C. Zhi*. Reconstructing vanadium oxide with anisotropic pathways for a durable and fast aqueous K-ion battery. ACS Nano, 2021, 15, 17717–17728

[19] J. Li, F. Huo, T. Chen, H. Yan, Y. Yang, S. Zhang*, S. M. Chen*. In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries. Energy Storage Mater., 2021, 40, 394-401.

[20] Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. M. Chen*. Recent Advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater., 2021, 33, 2106409.