2016年

Facile synthesis of nitrogen-doped, hierarchical porous carbon with high surface area: activation effect of nano-ZnO template

发文时间:2018-11-05

Facile synthesis of nitrogen-doped, hierarchical porous carbon with high surface area: activation effect of nano-ZnO template

Shukai Yu, Haoran Wang, Chen Hu, Qizhen Zhu, Ning Qiao, Bin Xu*

 

Hierarchical porous carbons have recently attracted much attention due to their unique features in practical applications, but suffer from the complex and costly synthesis procedure. In this work, a simple but very effective method was proposed to synthesize nitrogen-doped, hierarchical porous carbons with a high surface area by one-step pyrolysis of nano-ZnO/gelatin composites. During pyrolysis, zinc oxide nanoparticles act as not only a hard template to create mesopores, but also an activating agent to create micropores as well as enlarge the pore sizes of the mesopores, making the carbon possess a developed hierarchical porous structure with a high BET surface area of 2412 m2/g and a large pore volume of 3.436 cm3/g. The activation effect of nano-ZnO was investigated by thermogravimetric ****ysis, carbon yield, nitrogen adsorption-desorption measurements, SEM, TEM and so on. The pyrolysis temperature has an important influence on the properties of the carbon materials. Both the BET surface area and pore volume increase dramatically with the pyrolysis temperature. Being used as an electrode material for supercapacitors, the developed hierarchical porous structure endows the carbon with superior rate capability.